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Visually Weighted Compressive Sensing:
Measurement and Reconstruction
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Abstract— Compressive sensing (CS) makes it possible to more
naturally create compact representations of data with respect
to a desired data rate. Through wavelet decomposition, smooth
and piecewise smooth signals can be represented as sparse and
compressible coefficients. These coefficients can then be effec-
tively compressed via the CS. Since a wavelet transform divides
image information into layered blockwise wavelet coefficients
over spatial and frequency domains, visual improvement can be
attained by an appropriate perceptually weighted CS scheme.
We introduce such a method in this paper and compare it with
the conventional CS. The resulting visual CS model is shown to
deliver improved visual reconstructions.

Index Terms— Compressive sensing (CS), modified block
compressive sensing, visual compressive sensing, wavelet trans-
form, weighted compressive sampling matching pursuit.

I. INTRODUCTION

DESPITE the rapid development of efficient wireless com-
munication systems, Quality of Service (QoS) manage-

ment is still a critical issue because of the need to accom-
modate large increases in the number of mobile users and
in the volume of wireless video traffic. One solution may
be to compress high rate image and video data more effi-
ciently while ensuring that quality is maintained. Compressive
Sensing (CS) is a stable and robust technique that allows for
the sub-sampling of data at a given data rate: ‘compressive
sampling’ or ‘compressive sensing’ at rates smaller than the
Nyquist sampling rate [1], [2]. The theory of CS states that
if a signal is sparse in a transform domain, then it can be
reconstructed exactly from a small set of linear measurements
using tractable optimization algorithms. However, since a
random measurement may have deficient rank, the matrix
must satisfy the so-called Restricted Isometry Property (RIP).
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Thus far, most research on CS has focused on increasing
the robustness and reducing the computational complexity
of recovery algorithms [3]. Yet, while theoretical studies
have demonstrated the stability of CS, specific examples of
successful and practical applications remain elusive.

Furthermore, it is not certain that applying CS can deliver
competitive performance relative to standardized state-of-the-
art post-acquisition image and video compression methods,
such as the Joint Photographic Experts Group (JPEG), Mov-
ing Picture Experts Group (MPEG), and H.264 codecs. The
authors of [4] highlighted the potential and limitations of CS
as compared to traditional image compression methods, noting
that CS is far less efficient than the state-of-the-art JPEG2000
standard. Depending on the sparsity of an image, CS can
reduce both the number of measurements needed to reconstruct
it and the approximation error. In other words, when the
application data are sparse signals that are highly correlated
with other data, then superiority of the CS technique over other
compression methods can be demonstrated. Suitable likely
applications include Distributed Source Coding (DSC) [5], [6]
or Multiple Description Coding (MDC) [7], since their target
data are generally sparse. If a data set or signal is assumed
sparse or compressible, it is a candidate for exploiting the
benefits of CS. Wavelet decomposition, which is amenable to
analysis over a wide range of applications [8], allows smooth
and piecewise smooth signals to be represented by sparse and
compressible sets of coefficients and its hierarchical structure
provides an excellent framework for capturing global signal
features and for generating naturally layered data. Hence the
wavelet representation not only provides sparsity, but also
admits a natural scalable representation. These features have
motivated researchers to apply hierarchical weighting to CS
measurement and reconstruction.

The main contribution we make here is as follows: we
apply data obtained from a wavelet representation to CS,
where the measurement side emphasizes ‘visually important’
CS data. We leverage ideas from our previous work, where we
demonstrated an improvement in compressed image quality by
utilizing the concept of ‘visual entropy’, which is the expected
number of bits that is required to map image information onto
human visual coordinates [9] expressed in the wavelet domain
[10], [11]. Likewise, using the fact that visual entropy aims
to maximize visual information delivery within a constrained
data rate, we are able to show that applying visual entropy
to CS yields visually improved images. Specifically, we use
the layered structure of the image wavelet coefficients to
automatically assign different compression ratios to different
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subbands, thereby enhancing the measurement efficiency and
the visual reconstruction performance. We show that the
proposed CS approach compares favorably with conventional
CS under a visual importance criterion. We also suggest how
the proposed technique can be used in practice for ‘sensing
compressively’-whereby blocks of wavelet coefficients are
multiplied by different measurement matrices and a visual
weighting matrix.

A number of additional contributions derive from this work:
1) full utilization of sparsity from wavelet transform data,
2) a weight function defined on a visual sensitivity model,
3) image information maximization on CS measurements and
reconstruction, and 4) an example of an application of the
proposed method. Towards this end, we construct a visual CS
framework comprised of a modified block compressive sensing
(BCS) model at the CS measurement side and a weighted
Compressive Sampling Matching Pursuit (wCoSaMP) model
at the CS reconstruction side. Gains acquired from visual CS
are analyzed by modeling the wavelet transform data using a
Hidden Markov Model (HMM) [12].

II. PROPOSED IDEA IN CS AREA

A. Backgrounds of Compressive Sensing

Given orthonormal basis vectors {ψi }Ni=1, we can represent
each image signal x ∈ R

N using N coefficients {αi }Ni=1 as
x =∑N

i=1 αiψi . By stacking the ψi as columns in the N × N
matrix �, x can be expressed x = �α with α ∈ R

N . Using
the transformation �, which could be a wavelet transform, the
signal x can be represented as K -sparse data only if K � N
entries of α are nonzero. If the transform function � is a
discrete wavelet transform, the image signal may be written

x (s) =
∑

i∈Z2

α j0,iψ
L L
j0,i (s)+

∑

l∈L

∑

j≥ j0

∑

i∈Z2

αl
j,iψ

l
j,i (s) (1)

where we use the following notations:

s index over the spatial domain;
j index of wavelet decomposition level;
i index of location over the wavelet subbands;
l index of subbands excluding the L L subband, i.e.,

l ∈ L = {L H, H L, H H } where L and H denote the
low and high frequencies, respectively;

ψ L L scaling function;
ψ l shifted & dilated functions for the lth subband;
α j0,i scaling coefficients;
αl

j,i wavelet coefficients.

For brevity, (1) can be expressed in vector form as

x = �α = α0ψ0 +
∑

∀ j∈J

∑

∀i∈N j

α j,iψ j,i (2)

where J is the set of all subbands, (i.e., it includes all of
the decomposed subbands) and N j is the index set of the j th

subband. Therefore, the 1-D length-N vector α is constructed
by reconciling the wavelet coefficients as

α = [
α0 α1,1 α1,2 · · ·

]T = [α0 α1 α2 · · · αN ]T ∈ R
N×1.

(3)

(a)

(b)

(c)

Fig. 1. Conceptual comparison of visually weighted CS with conventional
compression and CS.

Assumed that �̂ = ��−1, x can be measured as

u = �̂x = ��−1x = �α (4)

where u is a measurement vector, u ∈ R
M , and � is an

M × N random measurement matrix, � ∈ R
M×N to satisfy

the Restricted Isometry Property (RIP) [13].
Although some natural and man-made signals are not

strictly sparse, they can be approximated as sparse signals.
Such approximated signals are called “compressible signals”.
Consider a signal α whose coefficients, when sorted in order
of decreasing magnitude, decay according to the power law

∣
∣αI(i)

∣
∣ ≤ G · i−1/r , i = 1, . . . N (5)

where I indexes the sorted coefficients, G = |αI(1)| is the first
amplitude of the sorted coefficients and r is a constant that is
dependent on the slope of the decay according to the index i .
As long as a rapid decay of their coefficients is demonstrated,
such signals could be well-approximated by K -sparse signals.

Let αK ∈ �K be the best K -term approximation of α. Such
an approximation is obtained by keeping only the first K terms
in αI(i) from (5), i.e.,

αK = arg min
ᾱ∈�K

‖α − ᾱ‖p (6)

where the �p norm of the vector α is defined as ‖α‖p =(∑N
i=1 |αi |p

)1/p
for 1 < p < ∞. The error of this approxi-

mation in the �p norm is denoted

σK (α)p � ‖α − αK ‖p . (7)

Then, for r < p, the integration of K sorted coefficients will
yield

σK (α)p ≤ (rs)1/p GK−s, (8)

with s = 1
r − 1

p [14].

B. Applying Visual Weighting to CS Based on Visual Sensitivity

Figure 1 depicts a conceptual comparison of visu-
ally weighted CS with conventional compression and CS.
As shown in Fig. 1(a), the encoder side of the general compres-
sion model comprises of “sample”, which includes possible
transformation to a different domain, and “compression”,
which includes quantization and presumed entropy coding. In
the compression step, source information is lost as a function
of bandwidth and the channel condition. By contrast with the
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(a) (b)

(c) (d)

Fig. 2. Visual weights defined over the wavelet domain. (a) Wavelet
decomposition. (b) Spatial domain ws

i weighting. (c) Frequency domain w f
i

weighting. (d) Overall wavelet domain wi weighting. Brightness: amount of
visual information [10].

general model, the compressive sensing stage in Fig. 1(b) aims
to sample the source using a random matrix at a compressed
rate, i.e., to sample the source compressively with respect to
the number of measurements M . As shown in Fig. 1(c), the
proposed visually weighted CS method compressively samples
the source as a function of the number of measurements,
while discarding visually unimportant information. Visually
important information is then packed into measurements of
the same length as in conventional (unweighted) CS.

CS can measure wavelet coefficient data uniformly via a
random matrix. However, since the wavelet transform decom-
poses data over space and frequency, each wavelet coefficient
may possess a different degree of visual importance from
other coefficients regardless of its own amplitude. Fig. 2
depicts a visual sensitivity model in the wavelet domain where
brightness represents the visual weight, i.e., brighter regions
are deemed to be more perceptually important. The visual
weight of the i th wavelet coefficient wi is characterized by
two visual components: a spatial weight ws

i and a frequency
weight w f

i . The weights well described in [10]. If the visual
weights are applied over the wavelet domain in conjunction
with the sampling processing of CS, better visual performance
can be obtained by the CS measurement and reconstruction
sides.

III. VISUAL CS MEASUREMENTS AND RECONSTRUCTION

A. Modified BCS

The authors of [15] proposed a fast block-based sampling
algorithm for fast CS of natural images, called Block Compres-
sive Sensing (BCS). In BCS, an original image is divided into
small blocks and each block is sampled independently using
the same measurement operation with M̃ = 	M

B 
, where B is
the number of blocks. In BCS, the measurements are easily
stored and utilized because of the small block size and it is
also unnecessary for the encoder to wait until the entire image
is measured.

Fig. 3. Modified BCS method developed in this paper.

Borrowing from the concept of BCS, whereby the ran-
dom matrix is divided into blocks, we define a modified
BCS method expressed in the wavelet domain that evolves
with the characteristics of each subband. Under this different
assumption, we show how to obtain the theoretical bound
when the statistics of the wavelet coefficients are utilized.
Moreover, when visual weighting is included, the attained
performance bound yields deeper insights the performance of
CS with respect to perceptual quality. Modified BCS proceeds
as follows: first, wavelet data from an image is partitioned
into four blocks of size N/4 as shown in Fig. 3 (a), and
CS measurements are obtained for each block using four
random sensing matrices. Using u= �̂x= ��−1x= �α,
measurements from the modified BCS are obtained by

⎡

⎢
⎢
⎣

u1
u2
u3
u4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

�1
�2

�3
�4

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

α1
α2
α3
α4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

�1α1
�2α2
�3α3
�4α4

⎤

⎥
⎥
⎦. (9)

Although this approach appears to use the two sequential
steps-wavelet transform and measurement, the two steps can be
simultaneously expressed as the matrix �̂ = ��−1. From the
perspective of conventional CS, the only difference is that the
measurement consists of the random and transform matrices.
However, the product of the two matrices can be treated as
a random matrix, so this approach treated as a subset of
general CS and following all the theory inherited from it. This
melds seamlessly with the CS philosophy even while using
wavelet coefficients having different statistical characteristics.
To exploit this modified BCS method in practice, the random
matrix should be altered as shown in Fig. 3 (b), where the
blank portions of the random matrix are padded with “zero”
values.

Let b denote an index of the divided blocks, Nb denote
the number of coefficients and Mb denote the number of
measurements in each block respectively. For block b, the
measurement vector ub becomes ub = �bαb where αb =
[αb,1, . . . , αb,n, . . . , αb,N/4]T and �b is an Mb × (N/4) ran-
dom matrix with Mb = c · Kb log (Nb/Kb). Depending on
the number of non-zero coefficients Kb, the dimension of
the measurement matrix is determined to satisfy the Kb-
RIP. A constant c is applied to all blocks such that Mb =
c ·Kb log (Nb/Kb). Since the modified BCS utilizes four quad-
random matrices �b ∈ R

Mb×(N/4), rather than an M × N
matrix, memory efficiency can be improved. This modified
BCS strategy provides a simple structure at the measurement
side, while also reducing the number of measurements made.
Assume that the number of blocks is 2, the sparsities of
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Fig. 4. Sorting of wavelet coefficients with respect to their amplitudes.
(a) Conventional CS. (b) Modified BCS with two blocks.

the blocks are K1 and K2 and that the decision variable is
κ = M/

∑
∀b Mb (if κ ≥ 1, then

∑
∀b Mb ≤ M). To express

the gain from using modified BCS in a closed form, we assume
that c is constant over all blocks. With M = c · K log (N/K )
and Mb = c · Kb log (Nb/Kb), κ becomes

κ = c · K log (N/K )

c (K1 log (N1/K1)+ K2 log (N2/K2))

= (N/K )K

(N/2K1)
K1 (N/2K2)

K2
. (10)

Since K = K1 + K2, (10) becomes

= (2K1)
K1 (2K2)

K2

K K
=

(
2K1

K

)K1
(

2K2

K

)K2

.

The case K1 ≥ K2 induces K1/K ≥ 1/2 and K2/K ≤ 1/2.
Then (10) becomes

=
(

2K1

K

)K1
(

2K2

K

)K2

≥ 1. (11)

Otherwise, if K1 ≤ K2, (11) still holds. This approximation
can be recursively expanded to handle aa larger number of
blocks with K1 = K1,1 + K1,2 and K2 = K2,1 + K2,2.
Therefore, the number of measurements required by modified
BCS does not exceed the number of measurements required
by conventional CS:

∑

∀b
Mb ≤ M. (12)

Even if this assumption is not applicable in general, it can be
experimentally demonstrated that Eq. (12) is usually satisfied.

B. Visually Weighted Block Compressive Sensing

Since signals represented in the wavelet domain are not
strictly sparse, it is necessary to approximate them as com-
pressible signals for analyzing. The slopes of the wavelet coef-
ficients, after being sorted by amplitude, are shown in Fig. 4(a)
and (b) for conventional and modified BCS, respectively.
The dotted line across the index axis represents the acquired
number of non-zero values, i.e., the K largest coefficients
selected from the sorted coefficients as shown in Fig. 4(a). To
maintain consistency, non-zero values satisfying K1+K2 = K

Fig. 5. Modified BCS with visual weights called as visually weighted BCS.

should be chosen. To generate a solution, an optimization
problem can be formulated. Non-zero values are selected by
minimizing the MSE over each block (this can be interpreted
as minimization of the K -term approximation error in (7)).
The MSE can be expressed

MSE = ‖x − x̃‖22 = ‖α − α̃‖22 =
∑

∀b∈B
‖αb − α̃b‖22. (13)

As shown in Fig. 2, the 1st block is more visually important
than the other blocks since the visual function quantifies the
extent to which a unit error can affect perception. Thus the
weighted MSE is obtained :

weighted MSE = w‖α − α̃‖22, (14)

where w is the diagonal matrix comprised of the visual
weight over the wavelet domain, i.e., w = diag(w1, . . . ,

wi , . . . , wN ), and wi = ws
i ·w f

i .
The measurement matrix for visually weighted BCS is

obtained by multiplying the visual weight matrix by the
random and transform matrices as shown in Fig. 5. Note
that if the visual weight matrix is included in that con-
struction of the measurement matrix, the theoretical analysis
derived for conventional CS also seamlessly applied to visually
weighted BCS. For a given number of measurements M , the
measurements obtained by visually weighted BCS preferen-
tially include visually more important components. Visually
weighted BCS also samples the image signal more com-
pressively for a given number of measurements since the
measurement matrix is expressed as u = �wx = �w�−1x =
�wα.

C. Hidden Markov Wavelet-Tree Model

To deliver a gain in performance by modified BCS, the task
of choosing an optimal number of non-zero values is analyzed
by modeling the wavelet coefficients as in the following
theorem.

Theorem 1: Each wavelet coefficient can be modeled by
estimating the power number r in (5):

∣
∣αI(i)

∣
∣ ≤ G · i−1/r ≤ G · i−1/

(
4− 2N

G2 var(α)
)

. (15)

The detailed proof of Theorem 2 is given in Appendix.
Since splitting the wavelet domain into blocks introduces

statistical variations between blocks, the modeling of wavelet
coefficients for each block should also be modified. HMM
have been successfully used to improve the performance
of denoising, classification, and segmentation algorithms for
wavelet-sparse signals [16], [17].



1448 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

Statistically, each sparse coefficient can be modeled as one
of two types of Gaussian random variables. The first type of
variable has a large variance due to the large amplitude of non-
zero coefficients. The other type of variable has a small vari-
ance due to small or zero coefficients. Let L and S be stages of
large and small variance, respectively. These two components
are distinguished by associating each wavelet coefficient α j,i

with a hidden state Sj,i ∈ {S, L}. Depending on the state Sj,i

of α j,i , the pdf of α j,i is conditionally different as follows

f
(
α j,i |Sj,i = S

) = N (
0, var(αS, j,i)

)
,

f
(
α j,i |Sj,i = L

) = N (
0, var(αL , j,i)

)
(16)

where var(αS, j,i) ≤ var(αL , j,i). Assume that the probability
of each state is Pr

(
Sj,i = S

) = pS
j,i or Pr

(
Sj,i = L

) = pL
j,i .

The term f
(
α j,i

)
is then obtained as follows

f
(
α j,i

) = Pr
(
Sj,i = S

) ·N (
0, var(αS, j,i)

)

+Pr
(
Sj,i = L

) ·N (
0, var(αL , j,i )

)

= pS
j,i · g

(
α j,i ; 0, var(αS, j,i)

)

+pL
j,i · g

(
α j,i ; 0, var(αL , j,i)

)
(17)

where pS
j,i + pL

j,i = 1 and g (x;mean(αi ), var(αi )) =
1√

2πvar(αi )
exp

(
− (x−mean(αi ))

2

2var(αi )

)
.

The Markov model is then completely determined by a set
of state transition matrices for coefficients at scales

A j,i =
[

pS→S
j,i pS→L

j,i
pL→S

j,i pL→L
j,i

]

. (18)

The values of pS→S
j,i and pL→L

j,i are significantly larger
than their complements. If the hidden state probabilities are
provided for the wavelet coefficient on the coarsest scale pS

1
and pL

1 , then the probability distribution for any hidden state
can be obtained recursively:

Pr
(
Sj,i = S

) = pS
αP( j,i)

pS→S
j,i + pL

αP( j,i)
pL→S

j,i , (19)

Pr
(
Sj,i = L

) = pS
αP( j,i)

pS→L
j,i + pL

αP( j,i)
pL→L

j,i . (20)

The HMM parameters include the probabilities for the hidden
states

{
pS

j,i , pL
j,i

}
, the state transition matrices A j,i , and the

Gaussian distribution variances
{
var(αS, j,i), var(αL , j,i)

}
for

each wavelet coefficient.
For simplicity, each wavelet coefficient at a scale has

the same statistical behavior, i.e., var(αS, j ) = var(αS, j,i) =
var(αS, j,k) for i 
= k and var(αL , j ) = var(αL , j,i) =
var(αL , j,k) for i 
= k. The simple model has parameters
A j and

{
var(αS, j ), var(αL , j )

}
for 1 ≤ j ≤ J . In addition,

the variances var(αS, j ) and var(αL , j ) are modeled so that
the decay of the coefficient magnitudes across scale may be
considered. Thus, the variances decay exponentially as the
scale becomes finer

var(αS, j ) = CσS · 2− j ·aS, var(αL , j ) = CσL · 2− j ·aL

where the parameters CσS ,CσL , aS , and aL follow the model
in [17]. The term var(α j ) is obtained as follows

var(α j ) =
(
Pr

(
Sj = S

))2
var(αS, j )+

(
Pr

(
Sj = L

))2
var(αL , j ).

(21)
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Fig. 6. Intuitive explanation of modified BCS. (a) Without visual weights.
(b) With visual weights.

For the bth block, the variance of αb becomes

var (αb) = 1

Nb

∑

∀ j∈Jb

∑

∀i∈N j

(
α j,i

)2

= 1

Nb

∑

∀ j∈Jb

∣
∣N j

∣
∣ · 1

∣
∣N j

∣
∣

∑

∀i∈N j

(
α j,i

)2

=
∑

∀ j∈Jb

∣
∣N j

∣
∣

Nb
var(α j ). (22)

Finally, the signal model in each block can be expressed

∣
∣αb,I(i)

∣
∣ ≤ Gb · i−1/rb ≤ Gb · i

−1/

(

4− 2Nb
G2

b
var(αb)

)

, (23)

and each block’s error in the Kb-term approximation becomes

‖αb − αb,Kb‖22 ≤ (rbsb)
1/2 GK−sb

b . (24)

D. Upperbound of Gain from Visually Weighted BCS

Equation (8) can be interpreted as an upper bound on the
approximation error due to undersampling. Once the statistics
of each subband are obtained, then (8) can be utilized to
derive an upper bound on the gain when visually weighted
BCS is employed.

The performance difference obtained when sampling
non-zero values over each block for the cases of “with visual
weight” and “without visual weight” is shown in Fig. 6(a)
and (b), respectively. Since the 1st block contains more
visually important data than the 2nd block, it is necessary to
select more non-zero values from the 1st block, as shown in
Fig. 6(b). To find the optimal number of non-zero values, an
objective function is used:

min
Kb

∑

b∈B
‖αb − αb,Kb‖22 , s.t.

∑

b∈B
Mb ≤ M̄ (25)

where αb,Kb = arg minᾱb ‖αb− ᾱb‖2 and M̄ is the constrained
data rate in Fig. 1.

From (24), optimization of (25) can be re-formulated as

min
Kb

∑

b∈B
(rbsb)

1/2 G · K−sb
b , s.t.

∑

b∈B
cKb log

N

|B|Kb
≤ M̄ .
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Then formulate a Lagrangian relaxation

L (Kb, λ) =
∑

b∈B
(rbsb)

1/2 G · K−sb
b

+λ
(

∑

b∈B
cKb log

N

|B|Kb
− M̄

)

where λ is a nonnegative Lagrange multiplier. Taking
derivatives with respect to Kb and λ, respectively, yields the
Karush-Kuhn-Tucker (KKT) conditions:

∂L

∂Kb
= −sb (rbsb)

1/2 G · K−(sb+1)
b

+λ
(

c log

(
N

|B|
)

− c log Kb − c

)

≤ 0 (26)

Kb · ∂L

∂Kb
= 0 (27)

λ

(
∑

b∈B
cKb log

N

|B|Kb
− M̄

)

= 0 (28)

Due to complementary slackness, (26) can be simplified

−A · K−(sb+1)
b + B + C log Kb = 0, (29)

where A = √rbs3/2
b G, B = λ

(
c − c log N

|B|
)

and C = cλ.
By introducing the Wright Omega function ω(·), the optimal
value of K �

b is obtained

K �
b =

exp
(
ω

(
log

(
(sb+1)A

C

)
+ (sb+1)B

C

)
/ (sb + 1)

)

exp (B/C)
. (30)

Likewise, the weighted MSE-based optimization with (14)
in Fig. 6(b) becomes

min
Kb

∑

b∈B
wb‖αb − αb,Kb‖22, s.t.

∑

b∈B
Mb ≤ M̄ (31)

where wb = [wi , wi+1, . . .],∀i ∈ Jb and αb,Kb = arg minᾱb

‖αb − ᾱb‖p . A re-formulation yields

min
Kb

∑

b∈B
wb (rbsb)

1/2 G · K−sb
b , s.t.

∑

b∈B
cKb log

N

|B|Kb
≤ M̄,

where wb =∑
∀i∈Jb

wi . The optimal value of K̃ �
b is given by

K̃ �
b =

exp
(
ω

(
log

(
(sb+1)A

C

)
+ (sb+1)B

C

)
/ (sb + 1)

)

exp (B/C)
, (32)

where A = wb
√

rbs3/2
b G, B = λ

(
c − c log N

|B|
)

and C = cλ.
Express the relative gain from the optimal value of K �

b
when compared to K , the gain G

(
K , K �

b

)
, in terms of the

MSE, becomes

G
(
K , K �

b

) = ‖α − αK ‖22 −
∑

b∈B
‖αb − αb,K �

b
‖22. (33)

If we want to show the gain between K �
b and K̃ �

b , (33) can
be extended as follows:

G
(

K �
b , K̃ �

b

)
=

∑

b∈B
‖αb−αb,K �

b
‖22−

∑

b∈B
‖αb−αb,K̃ �

b
‖22. (34)

Algorithm 1 Visually Weighted CoSaMP Algorithm

Input: M × N matrix �, sample vector u = �α + n and
sparsity of K , visual weight vector w

Output: K -sparse approximation a of α

1: a0 ← 0 (Initialization)
2: v ← u
3: k ← 0
while halting criterion do
4: k ← k + 1
5: y ← �∗v (Signal proxy)
6: 
← supp (W(y, 2K )) (Identification)
7: �← 
 ∪ supp

(
ak−1

)
(Support merger)

8: b|� ← �
†
�u (Estimation)

9: b|�c ← 0

10: ak ←W(b, K ) (Pruning)
11: v ← u −�ak (Sample update)
until (while)

In a similar manner, the visual gain between K �
b and K̃ �

b is
easily obtained

Gw
(

K �
b , K̃ �

b

)
=

∑

b∈B
wb‖αb−αb,K �

b
‖22−

∑

b∈B
wb‖αb−αb,K̃ �

b
‖22.

(35)

E. Visually Weighted CoSaMP for CS Reconstruction

In the Orthogonal Matching Pursuit (OMP) algorithm, an
element that best approximates the residual at each iteration
is selected from the dictionary [18]. The CoSaMP algorithm
[19], which is an extension of OMP, guarantees the same
performance as the best optimization-based CS recovery
approaches. Each coefficient in the wavelet domain has
a different visual weight. As such, it is advisable to also
focus on each coefficient’s visual weight and amplitude on
the decoder side to achieve an optimized visual CS. Since
CoSaMP guarantees that the performance for robust recovery
follows the best convex optimization approach, we modified
this state-of-the-art CS recovery algorithm using visual CS.

After applying modified BCS encoding to each block
separately in the wavelet domain, the visual CS scheme
reconstructs each piece of data according to its own visual
importance on the decoder side - this process is called visually
weighted CoSaMP or vwCoSaMP. The vwCoSaMP algorithm
sequentially selects the most important element with respect to
the visual weight rather than its own amplitude. The detailed
vwCoSaMP procedure is described in Algorithm 1. All of the
steps are identical to those of CoSaMP, except for the stages
of “identification” and “pruning”; the visual CS decoder
applies visual weighting in those stages. We define W(α, K )
as an algorithm that obtains the best K -approximation of α
in the subspaces

W(α, K ) = arg min
αK∈�K

w‖α − αK ‖2. (36)
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The performance of vwCoSaMP signal recovery over the
wavelet domain is robustly guaranteed by the following
theorem.

Theorem 2: Let α ∈ �K and u = �α+ n be a set of noisy
CS measurements. If � has a 4K -RIP constant δ4K ≤ 0.1,
then the signal estimate ak obtained from iteration k of the
vwCoSaMP algorithm satisfies

‖α − ak‖2 ≤
(

1

2
+ ‖w̄|
\�‖2

2‖w̄|�\
‖2
)k

‖α‖2

+
(

5.204

(

1+ ‖w̄|
\�‖2‖w̄|�\
‖2
)

+ 2.111

)

‖n‖2.

Note that w̄ is the diagonal term of W in (36). Thus,

w‖α − ᾱ‖2 ≤ ‖w̄‖2‖ (α − ᾱ) ‖2 (37)

where w̄ = [w1w2 · · ·wN ]T and 
\� denotes the set differ-
ence of 
 and �. The detailed proof of Theorem 2 is omitted
for lack of space, but the procedure to prove Theorem 2
follows the one used to prove the CoSaMP algorithm in
Section 4.6 in [3]; a set of six Lemmas in [3] are required.
Modifications of the Lemmas in [3] can be applied to the
visual CS recovery process.

IV. FEASIBILITY OF THE CS PERFORMANCE

Visually weighted CS could be effectively applied in a
specific application where the sender has prior knowledge
of the statistical behavior of an image and samples the data
with low computational complexity, even if the receiver side
is allowed a high computational complexity. For example,
in a visual surveillance system, distributed multiple camera
nodes can periodically perform a simple measurement and
send the information to a master node. To reduce cost, each
camera node may have low compute power and conduct only
simple processing required to measure each image and send
it to the master node. By contrast, the master node may have
considerable computing power and storage capacity in order to
process and store all the information delivered from the many
camera nodes. Moreover, it is not necessary for the master
node to reconstruct all of the images transmitted from camera
nodes. The reconstruction is performed by the user only when
it is necessary to determine what is happening at a certain time
and place.

The modified BCS weighting mechanism can be extended
to applications of CS where selective nonuniform sampling
can produce better performance than uniform sampling, e.g.,
in medical imaging [20]. For example, CS may enable the
reconstruction of MRI image data from undersampled data
at relatively low levels of distortion as compared to an
original image, while allowing the scan-time to be signifi-
cantly reduced. Visually weighted CS is an attractive way to
improve visual quality via perceptually weighted optimization
of reconstruction following random nonuniform sampling on
the encoding side. By contrast to conventional MRI recon-
struction methods, visually weighted CS has the potential tp
deliver improved quality at lower cost.

Here we study the feasibility of CS as applied to image sam-
pling. Specifically, we determine the expected gain attained

by visually weighted BCS. If CS is applied to the sampling
process, it is necessary to estimate the number of bits required
to represent the sampled data. In spite of several theoretical
results regarding the rate-distortion performance of CS, it
is difficult to find any practical formula. We demonstrate
the differences in results achieved when sampling an image
using CS and visual CS. We assume that CS senses a signal
compressively, quantizes the measurements, then efficiently
represents them by entropy coding. In other words, the pro-
posed CS is used to sense signals at a compressed rate at the
sampling stage, which generates measurements. Quantifying
the CS data rate requires analyzing the statistical properties of
the random measurements. The random measurements come
from the product of a random matrix with the transformed
coefficients. Scalar uniform quantization is employed and the
data rate calculated as M

N h (u), where h (u) is the entropy (in
bits per pixel) of the quantized measurement data u.

A. Rate-Distortion Model of CS

Among M-length measurements u, the mth measurement
um is obtained by

um =
∑

∀i∈N

φi,mαi , (38)

where φi,m is the mth row element of the i th column �i of
�. Assume that the entries of � are i.i.d. Gaussian random
variables with zero mean and unit variance, then the pdf of
φi,m becomes

f
(
φi,m

) = g
(
φi,m ; 0, 1

)
, (39)

where

g(x;mean(x), var(x)) = 1√
2πvar(x)

× exp

(

− (x −mean(x))2

2var(x)

)

.

In [17], the pdf of the nth coefficient αn becomes

f (αi ) = pS
n · g (αi ; 0, var (αS))

+pL
i · g (αi ; 0, var (αL)) ,∀i ∈ N (40)

where pS
i + pL

i = 1.
Using (39) and (40), the pdf of the mth measurement um is

obtained

f (um) =
∑

∀i∈N

f
(
φi,m

)
f (αi )

=
∑

∀i∈N

g
(
φi,m ; 0, 1

) {
pS

i · g (αi ; 0, var (αS))

+ pL
i · g (αi ; 0, var (αL))

}

=
∑

∀i∈N

{
pS

i · g
(
φi,m ; 0, 1

)
g (αi ; 0, var (αS))

+ pL
i · g

(
φi,m ; 0, 1

)
g (αi ; 0, var (αL))

}
.

Because the mean and variance values for the prod-
uct of Gaussian distributions g (x;mean (x) , var (x)) and
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g (y;mean (y) , var (y)) are mean(x)2var(y)+mean(y)2var(x)
var(x)+var(y) and

var(x)var(y)
var(x)+var(y) in [21], the pdf becomes

f (um) =
∑

∀i∈N

{

pS
i · g

(

φi,m · αi ; 0, var (αS)

1+ var (αS)

)

+ pL
i · g

(

φi,m · αi ; 0, var (αL )

1+ var (αL)

)}

=
∑

∀i∈N

g

(

φi,m · αi ; 0,
(

pS
i

)2 var (αS)

1+ var (αS)

+
(

pL
i

)2 var (αL)

1+ var (αL)

)

(41)

Since each component φi,m is uncorrelated with other compo-
nents φ j,m , ∀ j ∈ N, j 
= i , (41) becomes

f (um) � g

(

φi,m · αi ; 0, |N |
((

pS
i

)2 var (αS)

1+ var (αS)

+
(

pL
i

)2 var (αL)

1+ var (αL)

))

.

The differential entropy for um then becomes

h (um) = 1

2
log2

(

2πe|N |
((

pS
i

)2 var (αS)

1+ var (αS)

+
(

pL
i

)2 var (αL)

1+ var (αL )

))

.

(42)

In [22], the classical rate distortion model is modified to yield
the data rate and distortion models expressed in terms of the
quantization step size �. In the codec, the relationship between
the quantization step size � and the quantization parameter
(QP) q is expressed as � = 2q/6. Considering the quantized
measurements, (42) becomes

h (um,�) = 1

2
log2

(
24πe|N |
�2

((
pS

i

)2 var (αS)

1+ var (αS)

+
(

pL
i

)2 var (αL)

1+ var (αL)

))

.

The empirical data rate is also defined by linearly scaling the
entropy in [23] as

r (um ,�) = ca
M

N
h (um,�)+ cb (43)

where ca and cb are constants. To decide constants ca

and cb, let Z be a random variable representing the sam-
ple points h (um,�). The random variable R of r (um,�)
can then be expressed as R = ca (M/N) Z + cb.
The expected value and variance of R are mean(R) =
ca (M/N)mean(Z) + cb and var(R) = c2

a (M/N)2 var(Z).
Therefore, ca = √(N · var(R)) / (M · var(Z)) and cb =
mean(R)− ca (M/N)mean(Z).

B. Rate-Distortion Model of JPEG2000

In general, visually weighted CS aims at sampling visually
important data from the original image so the basic idea

TABLE I

COMBINATIONS OF ENCODER AND DECODER

Scenario Measurements Reconstruction
1 CS CoSaMP
2 Modified BCS CoSaMP
3 Modified BCS vwCoSaMP
4 Visually weighted BCS vwCoSaMP

is fundamentally different from post-acquisition data com-
pression. Nevertheless, it is necessary to evaluate how much
performance gain we are to obtain in practical applications. To
make such an evaluation, we benchmark against JPEG2000
[24]. Since JPEG2000 also involves wavelet transformation,
quantization and entropy coding, we model rate-distortion for
JPEG2000 based on the pdf of coefficients α.

The pdf of the coefficient αn becomes

f (αi ) = pS
n · g (αi ; 0, var (αS))+ pL

i · g (αi ; 0, var (αL))

� g

(

αi ; 0,
(

pS
i

)2 · var (αS)+
(

pL
i

)2 · var (αL)

)

.

The differential entropy and the empirical data rate for αn are
then obtained by

h (αi ,�) = 1

2
log2

(
24πe

�2

((
pS

i

)2 · var (αS)

+
(

pL
i

)2 · var (αL)

))

(44)

r (αi ,�) = cch (αi ,�)+ cd , (45)

where cc and cd are constants. To determine the constants cc

and cd , it is assumed to use the mean and the variance as in
the procedure in the previous subsection.

V. EXPERIMENTAL RESULTS

A. Four Scenarios for Measurement and Reconstruction

We employ four experimental scenarios with different mea-
surement and reconstruction combinations, as tabulated in
Table I. Measurement data are obtained by producing a random
matrix with i.i.d. Gaussian entries.

The model (15) fits actual values as shown in Fig. 7; each
solid line represents the actual value of the sorted wavelet
coefficients from each block in the ‘Lena’ image (using the
Haar wavelet basis), while each dotted line represents the value
estimated from (15). Overall, the statistical model (15) follows
the true values quite well and thus we replace the actual
wavelet coefficients with the model values in the numerical
analysis.

B. Differences in the Number of Measurements

The number of measurements as a function of the inverse
sparsity level K/N (the sparsity level is defined here as
1 − K/N)) for conventional CS encoding and modified BCS
is compared in Figs. 8(a) and (b). To obtain values for
modified BCS, we use K �

b in (30) with respect to M =
∑

b∈B cKb log Nb
Kb

. As shown in Fig. 8, the values of M and∑
Mb in (12) indicate that modified BCS introduces a gain in



1452 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

index

am
pl

itu
de

1st block (actual)

1st block (model)

2nd block (actual)

2nd block (model)

3rd block (actual)

3rd block (model)

4th

4th block (model)

Fig. 7. Modeling obtained by using (refeq:modeling) for each block in the
wavelet transformed “Lena” image.
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Fig. 8. Difference of the numbers of measurements between (a) conventional
CS and (b) modified BCS.

the number of measurements as compared to conventional CS
encoding. In other words, while modified BCS uses the same
number of non-zero values as conventional CS, it exhibits
improved compression efficiency due to a reduction in the
number of measurements.

C. PSNR, Weighted PSNR, and SSIM Evaluation

The performances of each scenario on the “Phan-
tom” and “Baboon” images (256 × 256) is shown in
Table I. For values of M in the range of 4000 to
30000, we calculated the Peak Signal-to-Noise Ratio
(PSNR). The PSNR is inversely proportional to the MSE
(PSNR = 10 log10(2552/MSE)). Values of the Structural
Similarity (SSIM) are benchmarked using the Mean SSIM
(MSSIM) index in [25]. A comparison of the PSNR among
the scenarios in Table I is shown in Fig. 9(a). It was found that
Scenario 3, the combination of modified BCS and vwCoSaMP,
is superior over the entire measurement range. The PSNR
values of Scenario 4 are not higher than those of Scenario 3
because of the loss of coefficients due to K̃ �

b . Another
finding is that all of the results have performance bounds
that none can overcome. This bound is the unrecoverable
energy which comes from the generation of sparse data. In
addition, measurements from Scenario 4 contain more impor-
tant coefficients in the 1st block. Consequently, Scenario 4
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Fig. 9. Performance comparisons as a function of the number of coefficients
for Scenarios 1–4. (a) PSNR. (b) Weighted PSNR.

is superior to the other scenarios, with the exception of
Scenario 3. It is apparent that the performance of vwCoSaMP
is better than that of CoSaMP because Scenario 3 exhibits
a better PSNR than Scenario 2. In addition, the perfor-
mance of modified BCS is superior to that of conventional
CS since Scenario 2 exhibits a better PSNR than Scenario
1. The values of the weighted PSNR (weighted PSNR =
10 log10(2552/weighted MSE)) are shown in Fig. 9 (b). Since
the weighted PSNR reflects visual weights as defined in (14),
Scenario 4 exhibits a definite gain in performance with respect
to the other scenarios. In other words, the best visual quality
is guaranteed over Scenario 4 despite the loss in energy.
In conventional CS, each coefficient is sampled randomly
without applying any weight to the distribution of coefficients.
However, each coefficient needs to be adaptively sampled
according to its visual importance to achieve a higher visual
quality relative to conventional CS. Therefore, our proposed
method intuitively shows visually improved performance
relative to conventional CS for a given number of measure-
ments.

Figure 10 shows reconstructed images for ‘Baboon’ when
a higher number of measurements (M = 23000). Since the
encoder chooses more important values from the coefficients
over the wavelet domain, Scenario 4 exhibits visual superiority
even with a sufficient number of measurements. In particular, if
we focus on an area around the eyes or nose of the ‘Baboon’ as
a Region of Interest (ROI), Scenario 4 shows improved visual
performance. Therefore, for this particular model, i.e., wavelet
decomposed data, we can observe that our proposed approach
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(a) (b)

(c) (d)

Fig. 10. Reconstruction through by the recovery algorithm (for M=23, 000).
(a) Scenario 1 (PSNR = 28.72 dB and SSIM = 0.89). (b) Scenario 2
(PSNR = 29.76 dB and SSIM = 0.93). (c) Scenario 3 (PSNR = 34.79 dB
and SSIM = 0.94). (d) Scenario 4 (PSNR = 34.57 dB and SSIM = 0.97).
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Fig. 11. Data rates plotted against the number of measurements for
logarithmic steps in quantization (Q). Solid line values: real rates. Dotted
lines: model rates from (43).

generally yields much better quality than other conventional
CS methods.

D. Rate Comparison of JPEG2000, CS and Visual CS

Figure 11 plots data rates from CS encoding against the
number of measurements for logarithmic stepped quantization
step sizes for the ‘Baboon’ image. It can be seen that the
empirical data rates in (43) fit the real ones (ca = 37.82 and
cb = −15.97). The modeling is applied to JPEG2000 using
(44) and (45).

Fig. 12(a) and (b) plot PSNR against data rate for the
‘Lena’ and ‘Phantom’ images when applying JPEG2000, CS
and visual CS. As shown in Fig. 12(a), the performance of
JPEG2000 generally overwhelms that of CS and visual CS
at the same data rate. In addition, it is apparent that the
performance of visual CS is higher than CS. Owing to the high
complexity of the ‘Lena’ image, the performance of JPEG2000
is much better than the other two algorithms. Unlike Fig. 12(a),
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Fig. 12. PSNR plotted against data rate for images. (a) “Lena.”
(b) “Phantom.”
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Fig. 13. Data rates plotted against the inverse sparsity level (K/N).

the PSNR of CS is mostly higher than that of JPEG2000 in
Fig. 12(b). Thus, it may be observed that CS and visually
weighted CS are appropriate for image compression with low
sparsity as for the ‘Phantom’ image. Based on findings from
Figs. 12(a) and (b), we measure the outperformance among
the three methods using (43) and (45).

Figure 13 shows a comparison of rates w.r.t. the inverse
sparsity level (ca = 37.82, cb = −15.97, cc = 43.84
and cd = −8.44 are used). While the rate of JPEG2000
does not vary much as a function of the inverse sparsity
level, those of CS and visual CS have a distinct gain at
low sparsity, i.e. K/N < 0.4. We benchmark JPEG2000
using perceptual distortion control as in [26]. It turns out that
the performance of the perceptually optimized JPEG2000 is
inferior to CS and visual CS when the original image has low
sparsity.
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VI. CONCLUSION

A visually weighted CS framework was proposed. Measure-
ments associated with different levels of visual importance
are obtained over the spatial and frequency domains. In the
proposed scheme, a modified BCS model on the measurement
stage leads not only to the encoding of data with respect to
the level of visual importance of information in the wavelet
domain, but also reduces the total number of CS measure-
ments. In addition, using vwCoSaMP on the reconstruction
side allows the proposed CS to recover sparse data in a
manner corresponding to the visual weights. In other words,
the visually weighted CS model fully utilizes the sparsity from
the wavelet transform data and improves visual quality by
combining visual weights with the CS encoder and decoder
using a visual weighted BCS and vwCoSaMP. Gains from
the visual CS framework were induced by the modeling of
wavelet coefficients. The experimental results demonstrated
the superiority of the proposed method. In conventional CS,
each coefficient is sampled equally without any information
about the coefficient; however, each coefficient is sampled
according to its visual importance when the volume of visually
weighted CS’s compressed data is the same as for conven-
tional CS. The visually weighted CS scheme produces the
better visual improvements by the introduction of the visual
weights.

APPENDIX

A. Proof of Theorem 2

Recall from (7),

σK (α)p � ‖α − αK ‖p =
(

∑

i∈N

(
αi − αK ,i

)p

)1/p

=
(

∑

i∈N

(
αI(i) − αK ,I(i)

)p

)1/p

(46)

where αK ,i is the i th element for the best K -term approxima-
tion of α and αK ,I(i) is the i th element when sorted in order
of decreasing magnitude for αK ,i .

Assume p = 2 and K = 1. Then, (46) may be interpreted as
the result of removing the largest coefficient from the original
set

σ1 (α)2 = ‖α − α1‖2 =
√∑

i∈N

(
αi − α1,i

)2 (47)

where α1,i is an element of α1. For example, if α =
[1 7 10 5 12 9], then α1 = [0 0 0 0 12 0]. Also, using
(8), (47) becomes

σ1 (α)2 ≤ (rs)1/2 G · 1−s = (rs)1/2 G, (48)

and the square of (48) becomes

(σ1 (α)2)
2 =

N∑

i=2

α2
I(i) +

(
αI(1) − α1,I(1)

)2

=
N∑

i=2

α2
I(i) ≤ (rs)G2.

By adding the largest value
(
αI(1)

)2 to both sides,

(σ1 (α)2)
2 + (

αI(1)
)2 =

N∑

i=2

α2
I(i) +

(
αI(1)

)2

=
∑

i∈N

α2
I(i) ≤ (rs)G2 + (

αI(1)
)2
.

Since
∣
∣αI(1)

∣
∣ ≤ G2 from (5) with i = 1, (σ1 (α)2)

2+ (
αI(1)

)2

becomes

(σ1 (α)2)
2 + (

αI(1)
)2 =

∑

i∈N

α2
I(i) =

∑

i∈N

α2
i

≤ (rs)G2 + (
αI(1)

)2 ≤ (rs)G2 + G2 = (1+ rs)G2.

If α is modeled as obeying a zero-mean Gaussian distribution
with variance var(α) = 1

N

∑
i∈N α

2
i [12], then

var(α) = 1

N

∑

i∈N

α2
i ≤

G2

N
(1+ rs) = G2

N

(
2− r

2

)
,

(49)

where r is the power number and s = 1/r − 1/2. Thus, the
power number r is bounded as

r ≤ 4− 2N

G2 var(α). (50)

Using (50), (5) can be expressed

∣
∣αI(i)

∣
∣ ≤ G · i−1/r ≤ G · i−1/

(
4− 2N

G2 var(α)
)

.

(51)
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